
THE WORLD IN 30
MINUTES
Tim Bray
RubyKaigi 2007
Sun Microsystems

I’ve been processing text for a living
since early 1987: OED, search engine,
Japanese tokenizer, XML, Atom; so if
someone wants to jump up and say
“you’re wrong” about something ruby-
related, well, there’s a good chance I
am. On the other hand, when it comes
to text processing and
internationalization and Unicode and
so on, I’m prepared to go on arguing
incredibly fine points of technical detail
until your arm falls off, and I’ll even
buy half the beers while arguing.

This graph was made by Dave Sifry of
Technorati. It averages over all the
days in June 2006. English is no longer
the majority language of the Internet.
Two languages are substantially
under-reported here, French and
Korean, because of the immense
popularity in both countries of
proprietary blogging servers that
Technorati can’t track. In 2007, it is
no longer acceptable to do i18n-
oblivious computing. It’s bad
business, and it’s immoral. Here’s one

/[a-zA-Z]+/
This is probably a bug.

I think this is stolen from Larry Wall

Storage

The Problems We Have To Solve

Identifying
characters

Byte⇔character

mapping Transfer

Good string API

To do a good job, here are the three
important problems. First of all, we
have to agree on how we’re going to
identify and describe characters. Then
while characters may be abstract,
computers aren’t; they can only store
and interchange is bytes, we have to
agree how we’re going to express
these characters as byte sequences.
There are two sides of this problem;
storing characters on RAM or disk, and
interchanging them on the network.
The latter is hard because, on the

Published in
1996; it has 74
major sections,
most of which
discuss whole
families of writing
systems.

If you want to really understand the
problem, start here. There aren’t that
many areas of human scholarship
where there is one definitive book; but
I think this one may qualify. If you love
language and writing and text, you
might want to get this just to read for
fun.

www.w3.org/TR/charmod

This is Unicode-centric, but its lessons
are generally applicable to anyone who
is trying to do network computing and
using a lot of text.

Identifying
Characters

This is the largest and most ambitious
attempt to make the universe of the
world’s characters useful to computer
programmers and users. It’s not
perfect, but it’s still an impressive
piece of work. I strongly recommend
that anyone who’s going to be doing
serious text processing buy this and
keep it around. It’s immensely big and
thick, but 80% of it is just tables of all
the characters. There are a few short
chapters in the front quarter of the
book that contain all the important

0 0
00

0

1 0
00

0

2 0
00

0

3 0
00

0

4 0
00

0

5 0
00

0

6 0
00

0

7 0
00

0

8 0
00

0

9 0
00

0

A 00
00

B 00
00

C 00
00

D 00
00

E 00
00

F 00
00

Basic Multilingual Plane

Dead Languages & Math

Han Characters

Language Tags
Private Use

1,114,112 Unicode Code Points

10
 00

00

17 “Planes” each with 64k code points: U+0000 – U+10FFFF

Non-BMP “Astral” PlanesBMP

99,024 characters defined in Unicode 5.0

Unicode characters are identified by
numbers called “code points”, and
they’re always given in hex with U+ in
front. The available space is about
8.9% full. Humans have created less
than 250,000 characters in all of
history, so if we’re typical, we should
be OK for the next three alien races we
meet. The original idea of Unicode was
that characters would be 16-bit; the
people who had this idea were
Americans and Europeans who didn’t
understand Asian languages. You’ll

00
00

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

A00
0

B00
0

C00
0

D00
0

E00
0

F00
0

Alphabets

Punctuation
Asian-language Support

Han Characters

Yi Hangul

Surrogates
Private Use

*

(*: Legacy-Compatibility junk)

The Basic Multilingual Plane (BMP)
U+0000 – U+FFFF

27,484 Han characters, 11,172
Hanguls, 6,400 private-use chars

00C8;LATIN CAPITAL LETTER E WITH
GRAVE;Lu;0;L;0045 0300;;;;N;LATIN
CAPITAL LETTER E GRAVE;;;00E8;
“Character #200 is LATIN CAPITAL LETTER
E WITH GRAVE, a lower-case letter,
combining class 0, renders L-to-R, can be
composed by U+0045/U+0300, had a different name in
Unicode 1, isn’t a number, lowercase is U+00E8.”

Unicode Character Database

www.unicode.org/Public/Unidata

È

What does Unicode know about a
character, aside from its number? This
is in a bunch of semicolon-delimited
ASCII files, and it’s kind of
complicated, but quite usable.
ActiveSupport::MultiByte uses it. I
usually have it loaded in an Emacs
browser buffer. Note the combining-
form issue; there are two separate
ways to encode “È”. Note that some of
these properties are potentially useful
in regular expressions.

$
U+0024 DOLLAR SIGN

Ž
U+017D LATIN CAPITAL LETTER Z WITH CARON

®
U+00AE REGISTERED SIGN

ή
U+03AE GREEK SMALL LETTER ETA WITH TONOS

Ж
U+0416 CYRILLIC CAPITAL LETTER ZHE

א
U+05D0 HEBREW LETTER ALEF

ظ
U+0638 ARABIC LETTER ZAH

ਗ
U+0A17 GURMUKHI LETTER GA

ઈ
U+0A88 GUJARATI LETTER II

ฆ
U+0E06 THAI CHARACTER KHO RAKHANG

༒
U+0F12 TIBETAN MARK RGYA GRAM SHAD

Ꮊ
U+13BA CHEROKEE LETTER ME

ᐑ
U+1411 CANADIAN SYLLABICS WEST-CREE WII

ᠠ
U+1820 MONGOLIAN LETTER ANG

‰
U+2030 PER MILLE SIGN

⅝
U+215D VULGAR FRACTION FIVE EIGHTHS

↩
U+21A9 LEFTWARDS ARROW WITH HOOK

∞
U+221E INFINITY

❤
U+2764 HEAVY BLACK HEART

さ
U+3055 HIRAGANA LETTER SA

ダ
U+30C0 KATAKANA LETTER DA

中
U+4E2D (Han character)

語
U+8A9E (Han character)

걺
U+AC7A (Hangul syllabic)

!
U+1D12B (Non-BMP) Musical Symbol Double Flat

㳘
U+2004E (Non-BMP) (Han character)

Huge repertoire
Room for growth
Private use areas

Sane process
Unicode character database

Ubiquitous standards/tools support

Nice Things About Unicode

Private use areas: NTT Docomo emoji,
European legislation special sorts. The
IETF and the W3C require that all new
Internet and Web protocols support the
Unicode character set and the UTF-8
encoding, so if you can’t do Unicode,
you can’t be part of the Net.

Combining forms
Awkward historical compromises

Han unification

Difficulties With Unicode

Combining forms: Early Uniform
Normalization. Historical problem is
that every one of the original character
sets that was harvested to produce
Unicode contained stupid design
errors, and most had to be preserved.
Finally, there is the process of Han
unification, in which a team of Asian
scholars chose single Unicode code
points for originally-Chinese
characters that are used separately in
Chinese, Japanese, and Korean, but are
agreed to be the same abstract

Pro: en.wikipedia.org/wiki/Han_Unification
Contra: tronweb.super-nova.co.jp/characcodehist.html
Neutral: www.jbrowse.com/text/unij.html

Han Unification

Alternatives
For Japanese scholarly/historical work: Mojikyo,
www.mojikyo.org; also see Tron, GTCode.
Also see Wittern, Embedding Glyph Identifiers in
XML Documents.

Mojikyo has over 140,000 characters
last time I checked.

Byte⇔Character Mapping

中

U+4E2D (Han character)
How do I encode 0x4E2D in bytes

for computer processing?

Issues: byte order, non-BMP, C str*
functions.

Storing Unicode in Bytes
Official encodings: UTF-8, UTF-16, UTF-32
Practical encodings: ASCII, EBCDIC, Shift-
JIS, Big5, GB18030, EUC-JP, EUC-KR, ISCII,
KOI8, Microsoft code pages, ISO-8859-*, and
others.

Most of the text in the world is in
ISO-8859*, Microsoft code pages, JIS,
Big5, or one of the GB* standards. But
they are all Unicode characters, so
standardizing on Unicode doesn’t
mean you can’t use all this stuff, it just
means you have to filter it on the way
in.

UTF-* Trade-offs
UTF-8: Most compact for Western languages,
C-friendly, non-BMP processing is transparent.
UTF-16: Most compact for Eastern languages,
Java/C#-friendly, C-unfriendly, non-BMP
processing is horrible.
UTF-32: wchar_t, semi-C-friendly, 4 bytes/char.
Note: Video is 100MB/minute...

Web search: “characters vs. bytes”

One of the reasons I’m not going to
dive deep on all that crap is that
ordinary civilian programmers who just
want to get a field out of a database
and render it on the screen, and want
to do this in multiple languages, do not
care about encodings! And shouldn’t
have to either. This is exactly the kind
of thing that you’d a programming
langauge to take care of for you

?

Text Arriving Over the Network

?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?

?

?

?

?
?

?
?

?

?
?

?
?

?
?

?

?

?
?

?
?

?

?
?

?

?

$Ž®ήЖظאਗઈฆ༒Ꮊ
ᐑᠠ‰⅝↩∞❤さダ
中語걺!㳘

?
?

?
?

?
?

?
?

?
?

?
?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

?

?

?
?

? ?
?

? ?

?

?

4 approaches: (1) Guess (like web
browsers, cf python library). (2) Believe
MIME metadata. (3) Trust. (4)...

An XML document knows what
encoding it’s in.

“
”

- Larry Wall

Note
s

What Java Does
Strings are Unicode. A Java “char” is actually a
UTF-16 code point, so non-BMP handling is
shaky. Strings and byte buffers are separate;
there are no unsigned bytes. The
implementation is generally solid and fast. The
APIs are a bit clumsy and there’s no special
regexp syntax.

It’s amazing how much special regexp
syntax buys you.

What Perl Does
Perl 5 has Unicode support, in theory. In a
typical real-world application, with a Web
interface and files and a database, it is very
difficult to round-trip Unicode without damage.
However, regexp support is excellent. Perl 6 is
supposed to fix all the problems...

Note
s

April 19, 2006 (c) 2006 Python Software Foundation 47

String Types Reform

• bytes and str instead of str and unicode
– bytes is a mutable array of int (in range(256))
– encode/decode API? bytes(s, "Latin-1")?
– bytes have some str-ish methods (e.g. b1.find(b2))
– but not others (e.g. not b.upper())

• All data is either binary or text
– all text data is represented as Unicode
– conversions happen at I/O time

• Different APIs for binary and text streams
– how to establish file encoding? (Platform decides)

What Python 3000 Will Do

(Guido’s Slide)

I think that Ruby should pay close
attention to the policies around the
Python 3000 reform project.

Core Methods With I18n Issues
== =~ [] []= eql? gsub gsub! index length
lstrip lstrip! match rindex rstrip
rstrip! scan size slice slice! strip
strip! sub sub! tr tr!

==/eql interesting because of
combining-forms. [] is and length and
so on are interesting because you have
to know whether you’re counting
characters or bytes. Strip-family
methods are interesting because there
are more white-space characters than
space, tab, nl, cr.

Problem: Missing Character
Iterator

Maybe String#each_char
Maybe change String#each
Maybe String#chars

Note
s

On Case-folding
Lower-case ‘I’: ‘i’ or ‘ı’?
Upper-case ‘i’: ‘I’ or ‘İ’?
Upper-case ‘ß’?
Upper-case ‘é’?
Just Say No!

A careful implementation of
casefolding, e.g. Java’s, will be insanely
slow and still often produce incorrect
results.

stag = "<[^/]([^>]*[^/>])?>"
etag = "</[^>]*>"
empty = "<[^>]*/>"

alnum = '\p{L}|\p{N}|' +
 '[\x{4e00}-\x{9fa5}]|' +
 '\x{3007}|[\x{3021}-\x{3029}]'
wordChars =
 '\p{L}|\p{N}|' + "[-._:']|" +
 '\x{2019}|[\x{4e00}-\x{9fa5}]|\x{3007}|' +
 '[\x{3021}-\x{3029}]'

word = "((#{alnum})((#{wordChars})*(#{alnum}))?)"
text = "(#{stag})|(#{etag})|(#{empty})|#{word}"
regex = /#{text}/

Regexp and Unicode

e.g. “won’t-go”

Will Ruby 2.0 do
these?

Note
s

Referring to Characters
if in_euro_area?
 append 0x20ac # Euro
elsif in_japan?
 append 0xa5 # Yen
else
 append '$'
end

Common idiom while writing XML.

Notice that there’s no concern for the
encoding of the string; the semantics
are those of characters.

What Should Ruby Do?
In 2007, programmers around the world expect
that, in modern languages, strings are Unicode
and string APIs provide Unicode semantics
correctly & efficiently, by default. Otherwise,
they perceive this as an offense against their
language and their culture. Humanities-
computing academics often need to work
outside Unicode. Few others do.

Note
s

Who’s Working on the Problem?
Matz/Ko1: M17n for Ruby 2
Julik: ActiveSupport::MultiByte (in edge Rails)
Nikolai: Character encodings project
(rubyforge.org/projects/char-encodings/)
JRuby guys: Ruby on a Unicode platform

Note
s

Thank You!
Tim.Bray@sun.com
www.tbray.org/ongoing/
this talk: www.tbray.org/talks/rubykaigi2007.pdf

