Typing Ruby Programs

Soutaro Matsumoto
(University of Tsukuba)

RubyKaigi’08

soutaro

Graduate student in University of Tsukuba
http://d.hatena.ne.jp/soutaro

LLRing (Aug, 2006) - Language Update (OCaml)
RejectKaigi 2007 (June, 2007) - Pragger is LL

IPS] PRO 2007-3 (Oct, 2007) -
Type Inference of Ruby Programs Based on Polymorphic
Record Type (%248l O — RBICED < Ruby 7 A7 T L DBEIHES)

http://d.hatena.ne.jp/soutaro
http://d.hatena.ne.jp/soutaro

Outline

Ruby Programming Language
Typing Ruby Programs

Intuitive Overview of the Type Inference
Algorithm

Limitations

Conclusion

Ruby Programming Language

class A
def f(x, y)

X.+(y)
end

end

a = A.new()
a.f(1, “2”)

Ruby is ...

an untyped language

an Object Oriented
Language

an dynamic language

Ruby is an Untyped Language

® |t is clear that the program
results TypeError
class A
def f(x, y) Ruby implementations do not
X.+(y) reject such programs

end

There are no type declarations
end 7P

in Ruby programs

a = A.new() Most programs do not want

a.f(1, “2”) NoMethodError, TypeError,
LocalJumpError,
ArgumentError, or?

Ruby is an OO Language

® Ruby has object / self / class /
class A fields / inheritance
(fields, self, and inheritance are
def £(x, y) important from the point of
X.+(y) view of type system)
end
end Most programs are written to
support structural conformance

a = A.new() (so-called duck typing)
a.f(1, “27)

Some programs are not:
Object#tis_a!

Ruby is a Dynamic Language

class A ® eval, send_,deﬂng_method,
def f(x, y) lambda, method_missing,

block_given?,,and more seem
X.+(y) harmful

end

end Extension libraries are nightmarish
They are not written in Ruby but C
a = A.new() It is impossible to guess what
a.f(1 happens when programs call
) ? q methods provided by extension
2.__send__(libraries

Typing Ruby Programs

® To statically reject programs that may result
runtime errors such as NoMethodError,
ArgumentError, or ...

® No extra type annotations
Existing Ruby programs should type check

® Dynamic features can not be ignored
Don’t just reject them

Type Inference

® Reconstruct types of expressions from their
contexts

® Based on ML style type inference

By unification and polymorphic record
(like OCaml / SML#)

® cf. Flow analysis
So called Safety Analysis

Dynamic Features

® Extension of existing classes

® Reflections / eval

Extension of Existing Classes

class String e Override / add methods in
def parenthesis() existing classes (open class)
“(#{self})”
end
end

® Most Ruby programmers love it
Widely used in Ruby programs

. ® One of the most characteristic
“a”.parenthesis() feature of Ruby

Reflections / eval

It is impossible to type them

Introduces type annotation [not yet]
Type annotations should be written in Ruby’s
syntax

dynamic_cast(Integer, eval(“1”)) [not yet]
C++ like syntax

How to treat parametrized types (like Array)

Intuitive Overview of
Type Inference Algorithm

® Definition of Type

® Examples

Definition of Type

® Type is a pair of set of methods
® Required methods / Available methods

® All types should hold the following:
Required methods C Available methods

o ({puts: () — String}, {puts: () — b, ..})= a

Reads:
The type is a, which should have method puts
and have methods puts, ...

14

Example

class A
def f(x, y)
X.+(y)
end
end

a1, IF:bxce—d .0

Integer :: ({}, {+: e A\Integdx,...}),
a = AWe::({COPece f— g},) = Integer
ff2))

a.f(13) \\\

String 2 ({1, {+ : h — String, ..}), \
h: ({to _str:()— String}, L) = String

Example

class A
def f(x, y)

X.+(y)

end Integer :: ({+ : e — Integer}, L),
end s\e . ({cap€ce: f— g}, D),

a::({}, {T: Integer x String — Integer, ...}),

String :: ({}, {+ : h — String, ...}),
h: ({to str:()— String}, L) > a

a = A.new()
a.f(1, “2”)

a:. ({}, {f : Integer x String — Integer, ...}),
Integer . ({+ : i — Integer}, L),
i::({corece:f— glZ+:h— String, ...}) = a

-:8: undefined method { coerce'} (NoMethodError)

Limitations

® Polymorphic methods
® Heterogeneous collections

® Soundness

® Array#map

® lambda

Polymorphic Methods

class A
def id(x) ® Methods can not have
X polymorphic type
end

o
end Method parameters can not

have polymorphic type

def huga(a)
a.id(1) + 1; a.id(“a”) + ”’b”
end

a = A.new
a.id(1) + 1; a.id(“a”)

huga(a)

Heterogeneous Collections

® |terations are supported
(in most cases)

a = [1, “27, []1] Elements only have methods
common for all elements
a.each {|x| (size)

puts Xx.size
} Arrays do not have to 1

method
=

alo] + a[l].to i
a[@] nor a[1] can not be

typed to have to_1i method
available

Soundness

® Sound type inference algorithm ensure
x = 100 that typed programs never go wrong

10.times {
if X % 2 ==

"lo1” Our algorithm does not have that
property: it is not sound

Soundness is not so important
Ruby is a safe language itself

To support many programs is more
important

Array#map

1,2,3].map {|x
.to s
}.maw{ | x|
X.to
}.mape | x
.Size

The result of map is typed as the same

lambda

It looks like an ordinal
method, but in fact it is a
primitive (Ruby programs can

def hoge() not simulate 1ambda)

lambda
end lambda without block

captures block given to outer
method

p = hoge {|x| puts x}
p.call(l)

Need a new rule to support it

But with a warning !!!
(Good news for me)

ToDo

® |mprove type inference
Many features are unsupported

® Formalize the semantics of Ruby
The semantics of the most unsupported

features are unclear (for me)

Conclusion

® http://www.typing-ruby.org

® Type checking is your friend
And it is very interesting

e eval,send,define _method, l1ambda,
Rails,and more are my enemy

http://www.typing-ruby.org
http://www.typing-ruby.org

