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About YJIT

e (Goal: speedups on real-world software
o Focus on web workloads, Ruby on Rails
e CRuby codebase is very complex
o Fall back to the interpreter for anything we don’t support
o Incrementally increase coverage, get more sophisticated
e Benefits of our approach:

o Highly compatible with all existing Ruby code
o  Supports latest Ruby features
o Highly underrated

e Built at Shopify, but fully open source (BSD)

o  We hope to eventually upstream this into CRuby

o Find ways to help both YJIT and MJIT @ YJ IT
https://github.com/Shopify/yjit



The Team

Project led by a team in the Ruby & Rails Infrastructure group at Shopify,
with multiple major contributions from GitHub

Maxime Alan W Aaron Patterson Kevin Newton Noah Gibbs
@Love2Code @alanwusx @tenderlove @kddnewton @codefolio

This project would not be
possible without them!

Jean Boussier John Hawthorn Eileen Uchitelle
@jhawthorn @eileencodes



The Space of Ruby JITs

MJIT

JRuby

TruffleRuby

MIR

MagLev

Many more no longer maintained



MJIT

e JIT integrated inside CRuby, based on GCC
® Strengths: Optcarrot 3000 frames

Already in CRuby!

Compatible with latest Ruby features
Good speedups on smaller benchmarks
Officially supported on multiple platforms Ryl

e Trade-offs:

Performs best on synthetic benchmarks (large methods)
GCC is not equipped to optimize dynamically-typed code
Limited control over codegen pipeline, what GCC does
Doesn’t always yield speedups on large programs

o V™M o JT

O

Ruby 3.0 JIT
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* TRUFFLE
" RUBY

e Alternative implementation of Ruby based on Truffle/Graal
e Strengths:

In active development

Powerful optimizer based on partial evaluation

o Huge speedups over CRuby on many benchmarks
o Good support for C extensions

e Trade-offs:

o  Warmup time
o Memory usage
o Reimplementation of Ruby, not a drop-in replacement

O

(@)



Language Compatibility

o In the work since 2013, tremendous performance
o Compatible with LuaJIT 5.1 (Lua at 5.4)

e JRuby <& Ruby
o Reaching 2.7 compatibility
o PyPy

o Ruby 2.5.7 compatibility, working on 2.6
+ * TRUFFLE
o LuadlT
o Initial release in 2007

e TruffleRuby
o Impressive optimizing JIT, well-loved by the community @
o Clearly faster than CPython in most cases
o Partially compatible, Python 3.6 syntax (CPython at 3.9) @ Pypy



How YJIT Optimizes Ruby



Infoworld UNITED STATES ~ SOFTWARE DEVELOPMENT CLOUD COMPUTING MACHINE LEARNING

Home > Core Java

So You Want To Optimize Ruby
CODO OO

By Charles Nutter
JavaWorld

| was recently asked for a list of "hard problems" a Ruby implementation
really needs to solve before reporting benchmark numbers. You
know...the sort of problems that might invalidate early perf numbers
because they impact how you optimize Ruby. This post is a rework of my

response...| hope you find it informative!

Fixnum to Bignum promotion

In Ruby, Fixnum math can promote to Bignum when the result is out of
Fixnum's range. On implementations that use tagged pointers to represent
Fixnum (MRI, Rubinius, MacRuby), the Fixnum range is somewhat less than
the base CPU bits (32/64). On JRuby, Fixnum is always a straight 64-bit
signed value.



Ruby Optimization Challenges

e Every operation on every basic type can be redefined
o Arithmetic ops on integers, floats, etc.
o Themeaningofx !'= nil

Methods can be redefined
Constants are not actually constant
Callees can read/write locals in callers

The method call logic is highly complex

o CRuby implements 71 kinds of method dispatch
e Real-world code has lots of small methods
o It's method calls all the way down
o Inlining is extra challenging

e (C extensions API




Lazy Basic Block Versioning

e Research work started during PhD at UdeM

o  Built Higgs, an optimizing JIT for JavaScript

o  Optimizing dynamic languages, eliminating dynamic type checks
e Type specialization without type analysis

o Traditional whole-program analysis is costly

o  What can we leverage in a JIT context?
e Reimagining of what a JIT compiler could be

o Traditional JIT compilers are method-based
o BBV operates at a lower level of granularity
o Lightweight technique, single-pass

e Small but diverse body of literature




Simple and Effective Type Check Removal
through Lazy Basic Block Versioning

Maxime Chevalier-Boisvert! and Marc Feeley?

1 DIRO, Université de Montréal
Montréal, QC, Canada
chevalma@iro.umontreal.ca

2 DIRO, Université de Montréal
Montréal, QC, Canada
feeley@iro.umontreal.ca

—— Abstract

Dynamically typed programming languages such as JavaScript and Python defer type check-
ing to run time. In order to maximize performance, dynamic language VM implementations must
attempt to eliminate redundant dynamic type checks. However, type inference analyses are often
costly and involve tradeoffs between compilation time and resulting precision. This has lead to
the creation of increasingly complex multi-tiered VM architectures.

This paper introduces lazy basic block versioning, a simple JIT compilation technique which
effectively removes redundant type checks from critical code paths. This novel approach lazily
generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent
type information. This does not require the use of costly program analyses, is not restricted by
the precision limitations of traditional type analyses and avoids the implementation complexity

of speculative optimization techniques.



Interprocedural Type Specialization of
JavaScript Programs Without Type Analysis

Maxime Chevalier-Boisvert

DIRO, Université de Montréal, Quebec, Canada
chevalma@iro.umontreal.ca

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—compilers, optimization, code gen-
eration, run-time environments

Keywords Just-In-Time Compilation, Dynamic Language,
Optimization, Object Oriented, JavaScript

Abstract

Dynamically typed programming languages such as Python
and JavaScript defer type checking to run time. VM imple-
mentations can improve performance by eliminating redun-
dant dynamic type checks. However, type inference analyses
are often costly and involve tradeoffs between compilation
time and resulting precision. This has lead to the creation of
increasingly complex multi-tiered VM architectures.

Lazy basic block versioning is a simple JIT compilation
technique which effectively removes redundant type checks
from critical code paths. This novel approach lazily gen-
erates type-specialized versions of basic blocks on-the-fly
while propagating context-dependent type information. This
approach does not require the use of costly program analy-
ses, is not restricted by the precision limitations of traditional
type analyses.

This paper extends lazy basic block versioning to propa-

Marc Feeley

DIRO, Université de Montréal, Quebec, Canada
feeley@iro.umontreal.ca

Truffle/JS on several benchmarks, both in terms of execution
time and compilation time.

1. Introduction

The highly dynamic semantics of JavaScript (JS) make op-
timization difficult. Late binding, dynamic code loading and
the eval construct make type analysis a hard problem. Pre-
cise type analyses also tend to be expensive, and are often
considered too costly to be used in Just-In-Time (JIT) com-
pilers.

Lazy Basic Block Versioning (BBV) [12] is an intrapro-
cedural JIT compilation strategy which allows rapid and ef-
fective generation of type-specialized machine code on-the-
fly without a separate type analysis pass (Section 2.2).

In this paper we introduce an interprocedural variant
which extends BBV with mechanisms to propagate type
information interprocedurally, across function call bound-
aries (Section 3), both function parameter and return value
types. Combining these new elements with BBV yields a
lightweight approach to interprocedurally type-specialize
programs on-the-fly without performing global type infer-
ence or type analysis in a separate pass.

A detailed evaluation of the performance implications is
nrovided in Section 5. Empirical results across 26 bench-



Interprocedural Specialization of Higher-Order
Dynamic Languages Without Static Analysis

Baptiste Saleil' and Marc Feeley?

1 Université de Montréal
Montreal, Quebec, Canada
baptiste.saleilQumontreal.ca

2  Université de Montréal
Montreal, Quebec, Canada
feeley@iro.umontreal.ca

—— Abstract

Function duplication is widely used by JIT compilers to efficiently implement dynamic lan-
guages. When the source language supports higher order functions, the called function’s identity
is not generally known when compiling a call site, thus limiting the use of function duplication.

This paper presents a JIT compilation technique enabling function duplication in the presence
of higher order functions. Unlike existing techniques, our approach uses dynamic dispatch at call
sites instead of relying on a conservative analysis to discover function identity.

We have implemented the technique in a JIT compiler for Scheme. Experiments show that it
is efficient at removing type checks, allowing the removal of almost all the run time type checks
for several benchmarks. This allows the compiler to generate code up to 50% faster.

We show that the technique can be used to duplicate functions using other run time inform-
ation opening up new applications such as register allocation based duplication and aggressive

inlining.
1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases Just-in-time compilation, Interprocedural optimization, Dynamic lan-
guage, Higher-order function, Scheme



The VM Already Knew That
Leveraging Compile-Time Knowledge to Optimize Gradual Typing

GREGOR RICHARDS, University of Waterloo, Canada, Canada
ELLEN ARTECA, University of Waterloo, Canada, Canada
ALEXI TURCOTTE, University of Waterloo, Canada, Canada

Programmers in dynamic languages wishing to constrain and understand the behavior of their programs
may turn to gradually-typed languages, which allow types to be specified optionally and check values at the
boundary between dynamic and static code. Unfortunately, the performance cost of these run-time checks can
be severe, slowing down execution by at least 10x when checks are present. Modern virtual machines (VMs)
for dynamic languages use speculative techniques to improve performance: If a particular value was seen once,
it is likely that similar values will be seen in the future. They combine optimization-relevant properties of
values into cacheable “shapes”, then use a single shape check to subsume checks for each property. Values with
the same memory layout or the same field types have the same shape. This greatly reduces the amount of type
checking that needs to be performed at run-time to execute dynamic code. While very valuable to the VM’s
optimization, these checks do little to benefit the programmer aside from improving performance. We present
in this paper a design for intrinsic object contracts, which makes the obligations of gradually-typed languages’
type checks an intrinsic part of object shapes, and thus can subsume run-time type checks into existing shape
checks, eliminating redundant checks entirely. With an implementation on a VM for JavaScript used as a
target for SafeTypeScript’s soundness guarantees, we demonstrate slowdown averaging 7% in fully-typed
code relative to unchecked code, and no more than 45% in pessimal configurations.

CCS Concepts: « Software and its engineering — Just-in-time compilers; Runtime environments;

Additional Key Words and Phrases: Gradual typing, run-time type checking



Two Key Components of Lazy BBV

e \ersioning of basic blocks
o Accumulate and propagate (type) information
o Specialize basic block based on contexts
o Selective tail-duplication, “unfold” the control-flow graph

e Lazy code generation

Lazy tail-duplication

It's like lazy evaluation for code

CFG as an infinite data structure

Generate code only when needed, truly Just-In-Time

(@)

o O O
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Deferred Compilation

e In a JIT, often want to specialize code based on run-time types
o Traditional JITs typically do this by profiling first
o Two implementations, or two modes of compilation

e Psyco and the unlift operator
o Promote run-time values into compile-time types

e \We call this deferred compilation and type capture

o Defer compilation as late as possible
o Pause compilation until we can peek at run-time values




Representation-Based Just-In-Time Specialization
and the Psyco Prototype for Python

Armin Rigo
School of Electronics and Computer Science
University of Southampton
SO17 1BJ
United Kingdom

arigo@tunes.org

ABSTRACT

A powerful application of specialization is to remove inter-
pretative overhead: a language can be implemented with an
interpreter, whose performance is then improved by special-
izing it for a given program source. This approach is only
moderately successful with very high level languages, where
the operation of each single step can be highly dependent
on run-time data and context. In the present paper, the
Psyco prototype for the Python language is presented. It
introduces two novel techniques. The first is just-in-time
specialization, or specialization by meed, which introduces
the “unlifting” ability for a value to be promoted from run-
time to compile-time during specialization — the inverse of
the lift operator of partial evaluation. Its presence gives
an unusual and powerful perspective on the specialization
process. The second technique is representations, a theory
of data-oriented specialization generalizing the traditional
specialization domains (i.e. the compile-time/run-time di-

R IR |

designed to lead themselves naturally to more efficient exe-
cution techniques — typically static compilation — while oth-
ers are not. The example on which we will focus is the
Python [21] language. Python is trivially strongly typed,
i.e. types are attached to the values and any variable can
contain values of any type. Moreover, all operations that
appear in the source code are fully polymorphic, with their
semantics usually defined by the run-time types of the in-
volved values. The operations are heavily overloaded by
built-in types and can be further overloaded by user-defined
types.

Python is thus essentially an interpreted language, al-
though a number of attempts have been made to compile it,
notably Python2C and its successor Pyrex'. The problem
is that merely removing the interpretative overhead (asso-
ciated with decoding and dispatching individual bytecode
operations) falls short of the expected major performance
increase, because each operation still has to determine the
types of the involved values at run-time. In particular, val-

2004



def get(obj, idx)
return obj[idx]
end

puts get ([0, 1, 2], 1)
puts get({ a:1, b:2 }, :a)



def get(obj, idx)
return obj[idx]
end

puts get ([0, 1, 2], 1)
puts get({ a:1, b:2 }, :a)

puts RubyVM: :InstructionSequence.disasm(method(:get))
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# opt_aref

# leave
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Some Early Results
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Compatibility

Recently added TracePoint support (thanks Alan Wu!)
Passing all CRuby tests (make check)

Matching Ruby head in the Shopify Core CI

Matching Ruby head in the GitHub backend ClI

Matching Ruby head in the Shopify’ StoreFront Renderer Cl
Able to run Shopify’s StoreFront Renderer in production






Performance Bottlenecks in CRuby
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Maximizing Performance

e Race cars aren't just regular cars with more powerful engines

e They also have:

o More aerodynamic design
Channel airflow to cool engine
Lighter body (eg: carbon fiber)
Racing suspension
Racing tires
High-performance brakes
o Special tuning

e For maximum performance, the entire design is highly specialized
e Engineering always involves tradeoffs

CHNONEC WOR O



Re-engineering CRuby

e To be fast, adding a JIT compiler to CRuby is not enough
o CRuby was designed with an interpreter in mind
o Design priorities for an interpreter are different
e For maximum performance, some re-engineering is necessary 4

e | am not suggesting that we rewrite all of CRuby :-)
o Target areas where a JIT compiler needs to interface with CRuby
What are the biggest performance bottlenecks?

O
o  What are some things that would be easy to improve?
o Help both YJIT and MJIT in the process




The Biggest Bottlenecks

e Ruby is object-oriented:
o Lots of short methods with many method calls in them
o Lots of instance variable accesses
e Much of the bulk of the machine code we generate is:
o Method calls (send & leave)
o Instance variable accesses
e Currently, both of these require many steps

o  Not something a JIT compiler can easily remove
o The format of objects and stack frames is defined by the interpreter



Instance Variable Reads in YJIT
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Overhead in Ruby ivar Accesses

e Almost all Ruby objects have more than 3 ivars
o So almost all ivar reads/writes in CRuby need two levels of indirection!
o This could be fixed with variable-width allocation
e Ruby classes don’t have all the info we need
o Is the object using an external ivar table? Check flags every time we access an ivar
o Is the object frozen or not? Check flags every time we write an ivar
o We could address this by using object shapes
e Two comparisons to check if something is a heap object
o Necessary because of Ruby’s tagging scheme
o This check happens all the time

e \We have the technology, we can make CRuby better




Home Projects Help Sign in Register

(y Ruby » Search: _ Ruby master

Ruby master

Overview Activity Roadmap RGHEEM Wiki  Repository

Feature #18045 Custom queries
. . . Backport 2.2
e Variable Width Allocation Phase Il Backport 2.3
; Back| 2.4
“ Added by peterzhu2118 (Peter Zhu) 28 days ago. Updated about 8 hours ago. Bgikgg: 25
) Backport 2.6
Status: Closed Backport 2.7
—_ Backport 3.0
Priority: Normal bugs: unassigned
Assignee: peterzhu2118 (Peter Zhu) De\;elopersMeeting
matz

Target version: -
[ruby-core:104684]

Description

GitHub PR: https://github.com/ruby/ruby/pull/4680
Feature description

Since merging the initial implementation in #17579, we've been working on improving the performance of the allocator
(which was one of the major drawbacks in the initial implementation). We've chosen to return to using a freelist-based
allocator and added support for variable slot size pages in what we call "size pools". We're still keeping the USE_RVARGC
compile-time flag that maintains current behaviour when it is not explicitly enabled.

Summary

* We now use pages with different slot sizes in pools to speed up allocation. Objects will be allocated in the
smallest slot size that fits the requested size. This brings us back to the freelist-based allocation algorithm and
significantly increases allocation performance.



Object Shapes

e Idea dates back to Smalltalk, one of the languages that inspired Ruby
e \Won't go into the details in this talk:

o My colleague Chris Seaton gave a talk about this earlier today
o Each object has a shape pointer
o Shapes are metadata about an object

e Tested and proven technology, used by
o Chrome’s V8

o Firefox’s SpiderMonkey

o  WebKit's JavaScriptCore (Safari) | .
o TruffleRuby - SMALLALK-80O

. THE LANGUAGE AND ITS IMPLEMENTATION

e There’s no reason why it couldn’t work for CRuby as well!

| Adele Goldberg and David Robson
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Variable-sized object (v 4)
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class Foo
def initialize
vo = 1
vl =
@v2
Av3 =

1

1

1

end

def get v3
Qv3

end

end

foo = Foo.new
foo.get v3

puts YJIT.disasm(Foo.instance method(:get v3))



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: Jjne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd:

mov rax, gword ptr [rl3 + 0x18] ; read self

; guard self is heap

1129b85el:
1129b85e4:
1129b85ea:
1129b85ee:

test al, 7
jne 0x11a9b802b
cmp rax, 8
jbe 0x11a9b802b

; guard known class

1129b85f4:
1129b85fe:
1129b8602:

movabs rcx, 0x10e742138
cmp gword ptr [rax + 8], rcx
jne 0x11a9b804e

; guard ivar is on extended table

1129b8608:
1129b860d:
1129b8613:
1129b8617:

test word ptr [rax], 0x2000
jne 0x11a9b806c

mov rax, qword ptr [rax + 0x18]
mov rax, qword ptr [rax + 0x18]

; check if ivar is Qundef

1129b861b:
1129b861f:
1129b8629:
1129b862d:

cmp rax, 0x34

movabs rcx, 8

cmove rax, rcx

mov qword ptr [rbx], rax ; push value on the stack



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: Jjne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
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1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: jne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: Jjne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

1129b85ea: cmp rax, 8

1129b85ee: jbe 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: Jjne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gword ptr [rax + 8], rcx
1129b8602: jne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

; guard known class

1129b85f4: movabs rcx, 0x10e742138
1129b85fe: cmp gqword ptr [rax + 8], rcx
1129b8602: jne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: jne 0x11a9b804e

; guard ivar is on extended table
1129b8608: test word ptr [rax], 0x2000
1129b860d: jne 0x11a9b806c

1129b8613: mov rax, gword ptr [rax + 0x18]
1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: Jjne 0x11a9b804e

1129b8617: mov rax, gqword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd: mov rax, gword ptr [rl3 + 0x18]
; guard self is heap

1129b85el: test al, 7

1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: Jjne 0x11a9b804e

1129b8617: mov rax, gword ptr [rax + 0x18]
; check if ivar is Qundef

1129b861b: cmp rax, 0x34

1129b861f: movabs rcx, 8

1129b8629: cmove rax, rcx

1129b862d: mov gword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd:

mov rax, qword ptr [rl3 + 0x18]

; guard self is heap

1129b85el:
1129b85e4:

test al, 7
jne 0x11a9b802b

; guard known shape

1129b85fe:
1129b8602:

1129b8617:

1129b862d:

cmp gqword ptr [rax + 8], 0x3973
jne 0x11a9b804e

mov rax, gword ptr [rax + 0x18]

mov qword ptr [rbx], rax



; getinstancevariable (Qv3)

1129b85dd:

mov rax, qword ptr [rl3 + 0x18]

; guard self is heap

1129b85el:
1129b85e4:

test al, 7
jne 0x11a9b802b

; guard known shape

1129b85fe:
1129b8602:

1129b8617:

1129b862d:

cmp gqword ptr [rax + 8], 0x3973
jne 0x11a9b804e

mov rax, gword ptr [rax + 0x18]

mov qword ptr [rbx], rax



; getinstancevariable (Qv3)
; guard self is heap
1129b85el: test al, 7
1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: Jjne 0x11a9b804e

1129b8617: mov rax, gqword ptr [rax + 0x18]



; getinstancevariable (Qv3)
; guard self is heap
1129b85el: test al, 7
1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: Jjne 0x11a9b804e

1129b8617: mov rax, gqword ptr [rax + 0x18]



; getinstancevariable (Qv3)
; guard self is heap
1129b85el: test al, 7
1129b85e4: jne 0x11a9b802b

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: Jjne 0x11a9b804e

1129b8617: mov rax, gqword ptr [rax + 0x18]



; getinstancevariable (Qv3)

; guard known shape
1129b85fe: cmp gqword ptr [rax + 8], 0x3973
1129b8602: jne 0x11a9b804e

1129b8617: mov rax, gqword ptr [rax + 0x18]



; getinstancevariable (Qv3)

; guard known shape

1129b85fe: cmp gqword ptr [rax + 8],
1129b8602: jne 0x11a9b804e
1129b8617: mov rax, gqword ptr [rax + 0x18]

0x3973



Looking Forward



Future Plans

e More sophisticated backend
o Separate type-specialization logic from codegen
o Simple register allocator
o Basic instruction selection

Eventual ARM64 support

e Bring object shapes (aka hidden classes) to CRuby
o  Current object model very complex, and not ideal for JITs
o Could be both simpler and more efficient

O




Collaboration with Ruby Core Developers

e JITs, being more complex than interpreters, are harder to refactor
o Stability is good for us

e Some things that could hurt YJIT (& also MJIT)

Major changes to the CRuby bytecode
Adding complexity and special cases
Changing the semantics of method calls
More complex instance variable lookups

e YJIT & MJIT have similar needs

o QOur plan is to upstream object shapes separately from YJIT
o  We could design a faster calling convention together
o Also happy to discuss other improvements to CRuby

(@)
(@)
(@)
(@)




Conclusion

e Early in the YJIT project
o Results still modest
o Clear path to much bigger speedups

e Building this new JIT inside CRuby

o Huge compatibility advantage
o Already passing all the CRuby tests
e |azy Basic Block Versioning (LBBV):
o Lazy evaluation for code
Capture type information as late as possible

O
o Precision advantage
o Linearization of code

YYIT



Contact & More

e To learn more about the technology:
o Simple and Effective Type Check Removal through Lazy Basic Block Versioning.
M Chevalier-Boisvert and M Feeley. ECOOP 2015.
o Interprocedural Type Specialization of JavaScript Programs Without Type Analysis.
M Chevalier-Boisvert and M Feeley. ECOOP 2016.
o Recordings of both talks on YouTube
e If you'd like to reach out and talk about compilers
o Ping me at maxime.chevalierboisvert@shopify.com
o Also @Love2Code via Twitter
e Are you looking for a fun, stimulating and flexible work environment?
o  Shopify is hiring!
o Permanently remote positions

o Send resume to maxime.chevalierboisvert@shopify.com m .
‘8 shopify

YJIT is on GitHub: https://github.com/Shopify/yjit



https://github.com/Shopify/yjit

