Better Ruby

NaCl
OSS Vision
Ruby Association

Yukihiro "Matz" Matsumoto
@yukihiro_matz

Powered by Rabbit 3

0.1

The Closing Keynote

WARNING
This is not a
technical talk

Ruby is Good

Powered by Rabbit 3.0.1

BEAHE

Tooting one's own horn

Powered by Rabbit 3.0.1

Fun to Code

Powered by Rabbit 3.0.1

A Programmers’ Best Friend

Rich Set of Standard Features

Features Organized in Classes

Less Restriction

Powered by Rabbit 3.0.1

¢ Integer Size
e Built-in / User Defined

Powered by Rabbit 3.0.1

Gems / Tools

Powered by Rabbit 3.0.1

Community

Powered by Rabbit 3.0.1

Productive

Powered by Rabbit 3.0.1

Happiness Leads to Productivity

Ruby on Rails

Powered by Rabbit 3.0.1

Rails first Released in 2004

Happy 20th Anniversary, Rails!

Still Being State-of-the-art Framework

So Many People/Companies use Rails

Ruby/Rails Drives the Society

TOP RUBY COMPANIES

https://toprubycompanies.info/

Fast Growing Startups in Japan

e ogies RIRTRR I} ™

5 Layerk 90 328

6 IrAvFq o 29w

7 hacomano s aze

5 2925 137 308

9 #r7e 1 5%

10 SUPERSTUDIO ECRNBSARRRRLTE 124 63%

10 RevComm REBRBORELZ7L 124 9

2 Arny BmAMmNIATA 119

3 jinjer AR 5] 13 4%
Z-U= uewomaiirh 19 338

15 {27429y BEI—ER 2 a2

16 Ubie [rTTTOrE o am

17 72T)

s £/ =

19 $e771— &

9

Powered by Rabbit 3.0.1

Py

Powered by Rabbit 3.0.1

o7

Powered by Rabbit 3.0.1

Efficient

Powered by Rabbit 3.0.1

Ruby was Slow

Powered by Rabbit 3.0.1

Ruby is Fast (Enough)

e GitHub
e Shopify
e Square (Block)

Ruby is Good

Powered by Rabbit 3.0.1

Ruby is Great

Powered by Rabbit 3.0.1

We are Greedy

Can we Make Ruby Better?

Powered by Rabbit 3.0

Is it Possible?

Powered by Rabbit 3.0.1

Yes

Powered by Rabbit 3.0.1

But How?

Powered by Rabbit 3.0.1

4 Aspects

Powered by Rabbit 3.0.1

1. Performance

Powered by Rabbit 3.0.1

Performance is Important

Everyone Loves Faster Languages

Everyone Loves Benchmarks

* YARV
o MJIT
o YJIT

YARV (2007)

® Bytecode VM
e Faster than Tree-Walking Interpreter
e 5-50 times Faster

MJIT (2018)

e Ruby3x3 (2014)

e 3 times Faster than Ruby2.0

* With some benchmarks (OptCarrot)
* Not with Rails apps

YJIT (2022)

e Faster JIT
e Basic Block Versioning
e Written in Rust

e Rails apps run 1.8x Faster
e Thanks to Shopify

Maxime Chevalier-
Boisvert

@maxmech

Maxime Chevalier-Bolsvert
obtained a PhD in compller design
at the University of Montreal in
2018, where she developed Basic
Block Versioning (BBV), a JIT
compiler architecture optimized
for dynamically-typed
programming kanguages. she Is
currentty leading a project at
Shopity to bulld YJIT, @ naw T
compiler built inside CRuby.

/7

-
Breaking the Ruby Performance
Barrier

With each of the past 3 Ruby releases, YJIT has delivered higher and higher performance.
However, we are seeing diminishing returns, because as JIT-compiled code becomes faster,
it makes up less and less of the total execution time, which is now becoming dominated by
C function calls. As such, it may appear like there is a fundamental limit to Ruby's
performance.

In the first half of the 20th century, some early airplane designers thought that the speed of
sound was a fundamental limit on the speed reachable by airplanes, thus coining the term
“sound barrier”. This limit was as it became that airflow
behaves differently at supersonic speeds.

in order to break the Ruby barrier, it will be y to reduce the
dependency on C extensions, and start writing more gems in pure Ruby code. In this talk,
want to look at this problem more in depth, and explore how YJIT can halp enable writing
pure-Ruby software that delivers high performance levels.

Powered by Rabbit 3.0.1

Takashi Kokubun
2 eoabun

Takashi Kokubun Is a Staff
Deveioper ot Shopily, based in the
San Francisco Bay Area. As 6 Ruby
commiltter, he has worked on JIT
compliers for Ruby since 2017, He
optimizes YJIT at work and RJIT in
his spare time.

=m
YJIT Makes Rails 1.7x Faster

Have you enabled Ruby 3.3 YJIT? You're using @ much slower Ruby it you haven't. YJIT makes
Railsbench 1.7x faster. In production, YJIT presents a 17% speedup to millions of requests per
second at Shopify.

Why does YJIT make Ruby so much faster? In this talk, you'll explore the latest YJIT
optimizations that have a huge impact on your application’s performance. Once you
understand what you're missing out on, you can't help but enable YJIT.

Powered by Rabbit 3.0.1

Further Performance Improvement Planned

Performance Heals Every Issue

Make Ruby VM Faster

Make Ruby Greater

2. Performance

Powered by Rabbit 3.0.1

Performance Heals Every Issue

VM is not the only bottleneck

Memory Management

® Object Heap Compaction
® Variable Width Allocation
® Object Shapes

e GC Improvements

Aaron Patterson
D@lenuquwu

Aaron is on the Rails core team,
the Ruby core team, and 15 a
Senior Staft Engineer working at
Shoplfy. In his free time, he enjoys
cooking, playing with cats, and
wiiting weird software.

Speeding up Instance Variables
with Red-Black Trees

The introduction of Object Shapes helped speed up cached instance variable reads as well
as decreased the moachine code required for JIT compilation. But what about cache misses?
Is there any way we can speed up instance variable access in that case? Ruby 3.3
Introduced a red-black tree cache to speed up instance variable cache misses. Let's learn
how instance variables are implementad, and how the red black tree cache speeds them
up!

Powered by Rabbit 3.0.1

Jeremy Evans
2 eleremyevanso

Jeremy Evans Is a Ruby committer
who focuses on fixing bugs in
Ruby. He the lead developer of the
Sequel database ibrary, the Roda
‘web toolkit, the Rodauth
authentication tramework, and
many other Ruby Wbraries. He ts
the author of *Polished Ruby
Programming’. He is the
maintainer of Ruby ports for the
OpenBSO operating system.

/7

-
Reducing Implicit Allocations
During Method Calling

When optimizing Ruby code, one of the best strategies is to try to reduce the number of
objects the code allocates. For some types of method calls, Ruby implicitly alocates objects
as part of methed call. In some cases, these implicit allocations are unavoidable, but in
other cases, they are unnecessary. This presentation will discuss changes made in Ruby 3.3
and planned for Ruby 3.4 to reduce or eliminate implicit object allocation during method
calling. We'll be going over new virtual machine instructions, changes to virtual machine
stack layout in the compiler, method callinfo flags, iseq param flags, and how we fixed
multiple bugs discovered during this optimization work.

Powered by Rabbit 3.0.1

o

-
Finding Memory Leaks in the
Ruby Ecosystem

nvt
actuns 95H7_FVEE A0 i by 1, and mavry s K] v 958 fnctn

[ri—

Powered by Rabbit 3.0.1

Memory is Expensive

We Need More Memory

We Should Reduce Memory (for VM)

If Ruby use Less Memory

We can Save tons of Money

Make Ruby use Less Memory

Make Ruby Greater

3. Performance

Powered by Rabbit 3.0.1

| could not predict Multi-Core Age

Concurrency for System Architecture

Concurrency for Performance

e Threads

e GVL

® Processes

e Fiber (for 1/0)

® Ractors (for CPU)

e NxM Threads
e Lightweight Ractors
e Ractor local GC

¢ Async Fibers

Make Ruby use More Concurrency

Make Ruby Greater

¥ e
T
Samuel Williams
@ ioquotix

Samuel Willams is a renowned
Rubylst, the author of Async, and
the creator of the Faicon web
server. His work focuses on
asynchronous 1/0 and
concurrancy in Ruby, enhancing
Its performance and scalability. As
membar of the Ruby core team,
Samuel is pvota in evolving
Ruby's concurrency model. He isa
reguior speaker at tech
conterances, known for making
complex toplcs accessible and
engaging.

(oo
Leveraging Falcon and Rails for

Real-Time Interactivity

In the rapidly evolving Iur\dscqn of web-based gaming, Ruby's potential for building
dynamic, reak This talk aims to shatter this
misconception by demonstrating the powerful synergy between Falcon, an asynchronous
web server, and Ruby on Ralls, the stalwart of web application frameworks.

is often

We will emboark on a journey to design and i areal-time i ive game from
the ground up, showcasing how Ruby, when coupled with Falcon's concurrency capabilities,
can be a formidable tool In the gaming domain. Key focus areas will include leveraging

high-throughput, low-latency game data,

Falcon's dri for

and i ling it with Rails t te user

Attendees will gain Insights into the nuances of real-time web communication in Ruby,
efficient handling of WebSockets, and the application of Rails’ robust features in a gaming

context.

/7

Powered by Rabbit 3.0.1

Koichi sasada
@kol

Koichi Sasada is a programmer,
mainly developing Ruby
interprater (CRuby/MFR1). He
received PhD (Information
Science and Technology) from the
University of Tokyo, 2007. Now he is
still working on MRI development
ot STORES, Inc. He Is also a director
of Ruby Association.

[o]
Ractor Enhancements, 2024

This talk presents recent updates to Ractor, which enables parallel and concurrent
programming on Ruby.

Ractor still lacks fundomental features. For example, we cannot use “require” method and
“timeout” methods on non-main Ractors because of synchronization and implementation
issues. We will discuss such problems and how to solve them. From a performance point of
view, we have introduced the M:N thread scheduler in Ruby 3.3 and we will show the
performance analysis with recent Improvements.

Powered by Rabbit 3.0.1

4. Performance

Powered by Rabbit 3.0.1

Software Performance is Important

Developer Performance is More Important

Ruby Programming is Fun

Better Experience by Tools Support

e Ruby-LSP
® Rubocop
e Steep

e Copilot

KoichiITo
(2 exoic

Koichi Ito is & member of RuboCop
core team and open source
software maintainer. He is a long
time practitioner of Ruby/Rals
application development with
eXtreme Progromming. He is also
Engineering Manager and
Distinguished Engineer ot ESM, Inc.

]
RuboCop: LSP and Prism

Do you remember the ‘Smarter, Faster” concept for Ruby 4.0?

RuboCop now includes the built-in LSP as an experimental feature. This feature was essential
to meet modern developer experience demands.

Ruby has some LSP implementations and among them, | will focus on the “Smarter, Faster”
concept that RuboCop, the de facto standard Linter and Formatter, is aiming for.

Currently, RuboCop uses the Parser gem for Ruby syntax parsing. In addition to this, there is
a plan to Introduce the Prism Ruby parser as an experimental option. I will also talk about
their purposes and designs.

RuboCop will enhance your by ing its built-in LSP. You can

receive RuboCop in its current state and future vision.

Powered by Rabbit 3.0.1

John Hawthorn
B ercmnen

John 15 a Ruby Committer, a Ralls
Core member, and a Staff
Engineer at GitHub on the Ruby
Architecture team. He's based in
Victoria, Canada

[
Vernier: A next generation
profiler for CRuby

A good profiler s essential to making faster code.

Vernier is a new profiler for CRuby 3.2+ which uses new techniques and new APts in Ruby with
more detalled and more accurate results than existing tools. It supports threads (Including
N:M), ractors, GVL activity, Garbage Collection, idle time, and more!

In this talk fll explain the challenges we faced with existing profilers, tradeoffs and changes
previously made to stackprof, the new techniques Vernier uses, and how more visibility in
what code Is run may change how we write Ruby for the better.

Powered by Rabbit 3.0.1

Ivo Anjo
(O] v EIe

1iove to work on Ruby
performance and that's how |
ended up at Datadog where m
buikding a new production open-
source Ruby profiier for the
ddtrace gem. | believe in bringing
profiling to the masses: profilers
should be easy to use and
understandable by everyone, and
I'm working hard on delivering this
vision.

[o]
Optimizing Ruby: Building an
Always-0n Production Profiler

In certain online circles, Ruby has a reputation for “"baing slow™ (very vigorous air quotas). |
don't think this is true; often applications are slow because they are doing a lot more work
than expected or intended. It's easy to write innocent-looking code that is actually using
expensive abstractions.

The Ruby 3 series has seen amazing advances in performance. What if, in addition to these
advances, we don't have to run as much code? Have you heard the saying “The fastest code
is the code which does not run™?

This Is where a profiler comes in: A profiler lets you see where cpu, time, memory and other
resources are being spent, and thus can be used to pinpoint exactly why an application is
slow, and what it's doing.

In this talk, | explore how Datadog's [ddtrace| open-source profiler works: what's needed to
build a profiler that can be always on, why use sampling, what sources of data the Ruby VM
provides, and how you can investigate your Ruby applications with it.

Powered by Rabbit 3.0.1

o7

o]
The state of Ruby dev tooling

During the last few years, the Ruby community invested significant effort into improving
developer tooling. A lot of this effort has been divergent; trying out many solutions to find out
what works best and fits Rubyists expectations.

Vinkcius Stock Is a Senlor Software So where are we at this point? How do we compare to other ecosystems? Is it time to
Developer working on the Ruby convergs, unite efforts and reduce fragmentation? And where are we going next? Let's
developer experience team at

Shopify. Vini started his journey analyze the full picture of Ruby developer tooling and try to answer these questions together.

witing Ruby on Ralls appications
In 2015 and now dedicates his time
to Improve developer tools,
language servers, gradual typing
and debuggers in the Ruby
ecosystem.

Powered by Rabbit 3.0.1

Need Better Parser

® parser gem
® ripper

Powered by Rabbit 3.0.1

We need the Universal Parser

Prism

Powered by Rabbit 3.0.1

® Prism (kddnewton)

e Parser by Lrama (yui-knk)

Sound Competition

L]
The grand strategy of Ruby
Parser

Yuichiro Kaneko

In RubyKaigl 2023, | presented how to solve three big Ruby parser problems. The solutions
@£ sspxeoiat

were feasible, however they were just tactics. This talk will provide the grand strategy of Ruby
The author of Lrama LALR parser

Parser.
generator, Ruby committer.

Powered by Rabbit 3.0.1

API will be based on Prism

Including AST (fundamental)

Prism will be Prism forever

The Core might be based on Lrama

e Hand-written Parser
e Parser from Parser Generator

Powered by Rabbit 3.0.1

Syntax Moratorium

Powered by Rabbit 3.0.1

We will Keep the current syntax

for at least a year

or probably 2,3 years

Except for Bug fixes & Clarification

To Give Both Parsers Equal Chance

Better Tooling Improves Productivity

Tools are out of Core Team's Scope

We need Community

We need to Lengthen our Stride

® Ruby Association Grant

® Google Summer of Code

¢ Independent Community Effort
e Conferences

Ruby Community

Together, We can be Stronger

Together, We can make Ruby Greater

The Power of Ruby Community

In Addition:

Powered by Rabbit 3.0.1

The Future of Ruby

Powered by Rabbit 3.0.1

Ruby4.0

Powered by Rabbit 3.0.1

“Namespace, What and Why”

The Missing Piece

Ruby2 (2004)

not Ruby2.0 (2013)

| once tried to restart Ruby

Just like Perl6 or Python3000

It turned out to be a bad idea

Ruby?2 ldeas

Powered by Rabbit 3.0.1

e Selector Namespace
e Keyword Arguments
e Method Combination
e Unicode Support

e Pattern Match

e Packages

e JIT Compiler

® Refinement (2.0)

e Real Keyword Arguments (3.0)
e Method Combination (2.0)

® Unicode Support (1.9)

e Pattern Match (2.7)

e Packages

e JIT (2.6)

e Selector Namespace
® Packages

Powered by Rabbit 3.0.1

Namespace Separation

Satoshi Tagomori
3 etagomeris

0SS developer/maintainer:
Fluentd, Noriro, MessagePock-
Ruby, Woothee and many others
malnly about Web services, data
cobecting and distributed/
streaming dota proceszing. Living
In Tokyo.

o7

-
Namespace, What and Why

is a feature in to separate Ruby code, native extensions, and

gems into separate spaces. The expected benefits of this feature are: * Making codes and
libraries name-collision-free * Having isolated Module/Class instances * Loading different

versions of libraries on a Ruby process

This talk will introduce what the namespace is (will be), why | want this feature in Ruby, and
how it will help your applications.

Powered by Rabbit 3.0.1

One More Thing

Dream Story

Powered by Rabbit 3.0.1

SDGs

Powered by Rabbit 3.0.1

Sustainable Development Goals

GX

Powered by Rabbit 3.0.1

Green Transformation

Ruby with less Comsuming

Memory & Performance

Single Binary

AOT Compiler

® Type Profiling
e Type Signatures
¢ Profile Guided Compilation

Sponsored by
NaCl

Powered by Rabbit 3.0.1

Sponsored by
OSS Vision

Powered by Rabbit 3.0.1

Sponsored by
GitHub Sponsors

Shopify
JetBrain [NEW]

Sponsored by
Ruby Community

Powered by Rabbit 3.0.1

Thank you

Powered by Rabbit 3.0.1

